NOAA Technical Memorandum ERL GLERL-32

THE FREE OSCILLATIONS OF LAKE ST. CLAIR --
AN APPLICATION OF LANCZOS' PROCEDURE
David J. Schwab

```
Great Lakes Environmental Research Laboratory
Ann Arbor, Michigan
July 1980
```

UNITED STATES DEPARTMENT OF COMMERCE
Philip M. Klutznick, Secretary

NATIONAL OCEANIC AND
ATMOSPHERIC ADMINISTRATION
Richard A. Frank, Administrator

Environmental Research Laboratories
Wilmot N. Hess, Director
Page
Abstract 1

1. INTRODUCTION 1
2. GOVERNING EQUATIONS 1
3. LANCZOS PROCEDURE 3
4. APPLICATION TO LAKE ST. CLAIR 5
5. CONCLUSION 7
6. REFERENCES 12

FIGURES

1. Numerical grid for Lake St. Clair. Depth contours at 2-m intervals. 6
2. Amplitude distribution for the first normal mode of Lake St. Clair, with a period of 4.06 h 9
3. Amplitude distribution for the second normal mode of Lake St. Clair, with a period of 3.12 h 10
4. Amplitude distribution for the third normal mode of Lake St. Clair, with a period of 2.17 h 10
5. Amplitude distribution for the fourth normal mode of Lake St. Clair, with a period of 1.89 h 11
6. Amplitude distribution for the fifth normal mode of Lake St. Clair, with a period of 1.74 h 11
TABLE
7. Frequencies of oscillation of Lake St. Clair as determinedby the Lanczos procedure at various truncations. Frequenciesare in cycles per hour. Asterisks denote spurious eigenvaluesas explained in the text.8

David J. Schwab

The frequencies and structures of the five lowest free oscillations of Lake St. Clair are determined by a Lanczos procedure. With the Lanczos procedure, a high resolution numerical grid can be used to resolve the detailed structures of the modes. The lowest mode has a calculated period of 4.06 h .

1. INTRODUCTION

The purpose of this paper is to present a method of determining the frequencies of free oscillation of an enclosed basin and, more importantly, a high resolution representation of the modal structures. The method used is a Lanczos procedure applied to the linear shallow water equations. The advantage of this procedure is that the governing differential operator can be discretized on a high resolution numerical grid without taxing the memory capacity of the computer.

2. GOVERNING EQUATIONS

The linearized, inviscid shallow water equations in the absence of rotation and forcing can be written as
and

$$
\begin{equation*}
\frac{\partial \vec{v}}{a t}=-g \nabla \zeta \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \zeta}{\partial t}+\nabla \cdot(h \stackrel{\rightharpoonup}{v})=0 \tag{2}
\end{equation*}
$$

where \vec{v} is the horizontal velocity vector, ζ is the free surface fluctuation, h is the water depth, t is the time, and V is the horizontal gradient operator. The boundary condition is that of perfect reflection, that is,

$$
\begin{equation*}
\overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{n}}=0 \tag{3}
\end{equation*}
$$

at the shoreline. The term \vec{n} is a vector normal to the shoreline.

[^0]Eliminating $\overrightarrow{\mathbf{v}}$ from (1) and (2) to find a single equation for ζ, we find

$$
\begin{equation*}
\frac{\partial^{2} \zeta}{\partial t^{2}}-g \nabla \cdot h \nabla \zeta=0 \tag{4}
\end{equation*}
$$

The boundary condition for ζ is, from (1) and (3)

$$
\begin{equation*}
\frac{\partial \zeta}{\partial n}=0 \tag{5}
\end{equation*}
$$

The free solutions of (4) are

$$
\begin{equation*}
\zeta_{n}(x, y, t)=\eta_{n}(x, y) e^{i \sigma_{n} t} \tag{6}
\end{equation*}
$$

Substituting into (4) and eliminating the time dependent part gives

$$
\begin{align*}
& -\sigma_{n}^{2} \eta_{n}-g \nabla \cdot h \nabla \eta_{n}=0 \\
& \nabla \cdot h \nabla \eta_{n}=\lambda_{n} \eta_{n}, \tag{7}
\end{align*}
$$

where the $n-$ characteristic value, λ_{n}, is defined as

$$
\begin{equation*}
\lambda_{\mathrm{n}}=\frac{-\sigma_{\mathrm{n}}^{2}}{\mathrm{~g}} \tag{8}
\end{equation*}
$$

To show that λ_{n} is real and negative, and therefore that σ_{n} is real so the free solutions are purely harmonic, multiply (7) by $\eta_{\mathfrak{n}}^{*}$ and integrate over the area of the basin.

$$
\int \eta_{\mathrm{n}}^{*} \nabla \cdot \mathrm{~h} \nabla \eta_{\mathrm{n}} \mathrm{dA}=\lambda_{\mathrm{n}} \int \eta_{\mathrm{n}}^{*} \eta \mathrm{dA}
$$

Partial integration and use of the boundary condition (5) gives

$$
\lambda_{\mathrm{n}}=-\delta \mathrm{h} \nabla \eta_{\mathrm{n}}^{*} \cdot \nabla \eta_{\mathrm{n}} \mathrm{dA} / \int \eta_{\mathrm{n}}^{*} \eta_{\mathrm{n}} \mathrm{dA}
$$

This shows λ_{n} to be real and negative.
One can also show the η_{n} to be orthogonal. Since λ_{n} is real, η_{n} is real.
One can write (7) for a different mode m as

$$
\begin{equation*}
\nabla \cdot h \nabla \eta_{m}=\lambda_{m} \eta_{m} \tag{9}
\end{equation*}
$$

Now multiply (7) by η_{m}, (9) by η_{n}, and subtract to obtain

$$
\begin{equation*}
\eta_{m} \nabla \cdot h \nabla \eta_{n}-\eta_{n} \nabla \cdot h \nabla \eta_{m}=\left(\lambda_{n}-\lambda_{m}\right) \eta_{n} \eta_{m} \tag{10}
\end{equation*}
$$

Integrate (10) over the area of the basin.

$$
\int\left(\eta_{m} \nabla \cdot h \nabla \eta_{n}-\eta_{n} \nabla \cdot h \nabla \eta_{m}\right) d A=\left(\lambda_{n}-\lambda_{m}\right) \int \eta_{n} \eta_{m} d A
$$

Partial integration of the left side and use of the boundary condition (5) gives

$$
\begin{equation*}
\left(\lambda_{n}-\lambda_{m}\right) \int \eta_{n} n_{m} d A=0 \tag{11}
\end{equation*}
$$

If $m=n$, this equation is satisfied trivially. For two different characteristic values, $\left(\lambda_{n}-X m\right) \neq 0$ so

$$
\begin{equation*}
\int \eta_{\mathrm{n}} \eta_{\mathrm{m}} \mathrm{dA}=0 . \tag{12}
\end{equation*}
$$

The eigenfunctions are orthogonal.
The free solutions to equations (1) and (2) are then characterized by pure harmonic time dependence with frequencies σ_{n} and mathematically orthogonal spatial structures.

3. LANCZOS PROCEDURE

To solve (7) for λ_{n} and n_{n}, we use a Lanczos procedure. When applied to the discretized version of a differential operator, the Lanczos procedure (developed by Lanczos, 1950 , and explained more fully in Paige, 1972) results in a tridiagonal matrix with the same eigenvalues as the general matrix of the differential operator. To proceed, first expand n_{n} as follows:

$$
\begin{equation*}
\eta_{n}=\sum_{i=1}^{\infty} C_{i}^{n} W_{i}, \tag{13}
\end{equation*}
$$

where the W_{i} are orthonormal over the area of the basin and satisfy the same boundary conditions as η, i.e.,

$$
\frac{\partial W_{i}}{\partial n}=0 .
$$

$$
\begin{equation*}
\int_{i} W_{i} W_{j} \mathrm{dA}=\delta i j, \tag{14}
\end{equation*}
$$

where $\delta_{i j}$ is the Kronecker delta.
Later the W_{i} will be further specified to simplify the calculation. (7) is then

$$
\begin{equation*}
\nabla \cdot h \nabla_{i} \sum_{E_{1}}^{\infty} C_{i}^{n} W_{i}=\lambda_{n} \sum_{i=1}^{\infty} C_{i}^{n} W_{i} \tag{15}
\end{equation*}
$$

Multiply by $\mathbb{W}_{\mathbf{j}}$ and integrate over the area of the basin.

$$
\begin{equation*}
\int W_{j} \nabla \cdot h \nabla_{i} \sum_{i=1}^{\infty} C_{i}^{n} W_{i} d A=\lambda_{n} \int_{i} \sum_{=1}^{\infty} C_{i}^{n} W_{i} d A \tag{16}
\end{equation*}
$$

Let

$$
\begin{equation*}
A_{i j}=\int W_{j} \nabla \cdot h \nabla W_{i} d A \tag{17}
\end{equation*}
$$

and use the orthogonality condition (14) to obtain

$$
{ }_{i} \sum_{=1}^{\infty} A_{i j} C_{i}^{n}=\lambda_{n} C: j
$$

or

$$
\begin{equation*}
A \vec{C}_{n}=\lambda_{n} \vec{E}_{n}, \tag{18}
\end{equation*}
$$

which is a standard eigenvalue problem. Note that discretizing the differential operator in (7) would result in the same sort of system as (18). The order of the matrix A would be proportional to the number of grid squares in the digitization of the basin and the structure would be somewhat banded but lacking any symmetric properties. The entire matrix would have to be stored in the computer to obtain eigenvalues and vectors. In the Lanczos procedure the W_{i} functions are chosen so that the matrix A is symmetric tridiagonal. Special numerical routines described in Smith et al. (1974) are used to find the eigenvalues and eigenvectors of the tridiagonal matrix. Only the main diagonal and first off-diagonal of the matrix are stored in the computer since the rest of the matrix elements are zero. Let

$$
\begin{gather*}
\alpha_{i}=\int W_{i} \nabla \cdot h \nabla W_{i} d A \tag{19}\\
\hat{W}_{i+1}=\left(\nabla \cdot h \nabla-\alpha_{i}\right) W_{i}-\beta_{i} W_{i-1} \quad i \geq 1 \tag{20}\\
B_{i+1}=\left(\int \hat{W}_{i+1} \hat{W}_{i+1} d A\right)^{1 / 2} \tag{21}
\end{gather*}
$$

$$
\begin{equation*}
W_{i+1}=\hat{w}_{i+1} / \beta_{i+1} . \tag{22}
\end{equation*}
$$

If W_{1} is given, (19)-(22) define a recursion relation for W_{i}, α_{i}, and B_{i}. A useful way of writing (20) is
or

$$
\begin{align*}
& \beta_{i+1} W_{i+1}=\left(\nabla \cdot h \nabla-\alpha_{i}\right) W_{i}-\beta_{i} W_{i-1} \\
& \nabla \cdot h \nabla W_{i}=\alpha_{i} W_{i}+\beta_{i+1} W_{i+1}+\beta_{i} W_{i-1} . \tag{23}
\end{align*}
$$

Multiply (23) by $W j$ and integrate over the area of the basin.

$$
\begin{equation*}
\int W_{j} \nabla \cdot h \nabla W_{i} d A=\alpha_{i} \delta W_{j} W_{i} d A+B_{i+1} \int W_{j} W_{i+1} d A+B_{i} \int W_{j} W_{i-1} d A \tag{24}
\end{equation*}
$$

We obtain the diagonal elements of A in (18) by letting $j=i$ in-(24).

$$
\begin{equation*}
A_{i i}=\int W_{i} \nabla \cdot h \nabla W_{i} d A=a_{i} \tag{25}
\end{equation*}
$$

The first off-diagonal is obtained by letting j = i-l in (24).

$$
\begin{equation*}
A_{i-1} i=\int W_{i-1} \nabla \cdot h \nabla W_{i} d A=B_{i} . \tag{26}
\end{equation*}
$$

It is easy to see that the matrix is symmetric

$$
\begin{equation*}
A_{i}{ }_{i-1}=\int W_{i} \nabla \cdot h \nabla W_{i-1} d A=B_{i} \tag{27}
\end{equation*}
$$

and that all other elements are zero.
In summary, the Lanczos procedure for the solution to (7) consists of: 1) selecting a starting function W_{1}; 2) applying (19)-(22) recursively to obtain α_{i}, β_{i} and Wi; 3) solving (18) for eigenvalues σ_{n} and eigenvectors \dot{C}_{n}; and 4) constructing η_{n} from (13).

4. APPLICATION TO LAKE ST. CLAIR

The outline and bathymetry of Lake St. Clair are digitized on a $1200-\mathrm{m}$ grid yielding 731 square elements as shown in Fig. 1. The depth plotted in this figure includes a $0.8-\mathrm{m}$ stage above low water datum (an average value for recent years). The recursion procedure (19)-(22) is applied with centered difference formulas for the gradient operator and simple summation for the integrations. Analytically, all the W_{i} are orthogonal according to (14). After applying (19)-(22) to the numerical grid 731 times, we should find that $W 732=0$. In practice, however, truncation error sets in after about 50 iterations and W_{50} is not orthogonal to W_{1}. The Wi do remain orthogonal in a "local" sense in that W_{50} is orthogonal to $W 25$ - W_{75}. Platzman (1975) has shown that the "local" orthogonality is adequate for determining periods and structures of at least the lowest modes.

Figure 1.--Numerical grid for Lake St. clair. Depth contours at 2-m intervale.

In the case of Lake se. Clair, the procedure was truncated at 244,488 , and $731 \mathrm{~W}_{\mathbf{i}}$. A large number of Wi are required to resolve the modal structures, but the eigenfrequencies are determined quite well even at low truncation. At higher truncations the loss of orthogonality tends to cause spurious values of λ_{i} to appear. These can be recognized in two ways. First, the lowest eigenvalues are well determined at low truncation, so that if a new eigenvalue appears at a higher truncation limit, it is probably spurious. Second, we can test the structure of the free mode as constructed by (13) with the parameter $\boldsymbol{\varepsilon}$ defined as follows:

$$
\begin{equation*}
\varepsilon=\int\left(\nabla \cdot h \nabla \eta_{n}-\lambda_{n} \eta_{n}\right)^{2} d A / \int \eta_{n}^{2} d A \tag{28}
\end{equation*}
$$

Analytically ε is zero, but when the discretized version of (28) is calculated numerically, $\boldsymbol{\varepsilon}$ is some small number and tends to be higher for spurious eigenvalues.

Table 1 lists the lowest 10 frequencies determined by the Lanczos procedure at the three different truncations. The value of $\boldsymbol{\varepsilon}$ at truncation 731 is also show". Spurious eigenvalues are marked by asterisks. The lowest four frequencies remain constant to five significant figures for the three different truncations. The fifth mode frequency changes in the second significant figure.

The spatial structures of the five lowest modes are shown in Figs. 2-6. The contour interval is 10 percent of the maximum value. The lowest mode, in Fig. 2, with a period of 4.06 h shows maximum amplitude in the Anchor Bay region north of the main lake basin. The nodal line runs across the lake from the St. Clair giver inflow to the St. Clair Shores region. On the eastern end of the lake, the amplitude attains only 20 percent of its maximum value.

The second mode, shown in Fig. 3, has a period of 3.12 h . There are two nodal lines so that the oscillation in the northern reaches of Anchor Bay is in phase with the eastern end of the main basin where maximum amplitude occurs. This mode is probably more important than the lowest mode in the generation of storm surges since the predominant westerly wind would pile water up at the eastern shore, conforming to the structure of this mode.

The 2.17 -h mode in Fig. 4 also has two nodal lines, but the axis of oscillation is oriented north-to-south. The $1.89-\mathrm{h}$ mode in Fig. 5 is the fundamental oscillation of Mitchell Bay. Note that this mode has a very small space scale and requires a fine grid mesh for sufficient resolution. The fifth mode in Fig. 6 at 1.74 h involves the whole Lake St. Clair Basin.

5. CONCLUSION

The Lanczos procedures is able to provide more detailed normal mode structures than traditional methods because it is more efficient in terms of computer storage. This was demonstrated on a $1200-\mathrm{m}$ grid representation of Lake St. Clair involving 731 grid squares. The structures of the five lowest modes show detail that could not be resolved on a coarser grid.

Table l.--Frequencies of oscillation Of Lake St. Clair as determined by the Lanczos procedure at various truncations. Frequencies are in cycles per hour. Asterisks denote spurious eigenvalues as explained in the text.

Truncation

Mode				ε
	244	488	731	
1	0.24619	0.24619	0.24619	$7.99 \times 10-31$
2	0.32000	0.32000	0.32000	1.95×10^{-31}
3	0.45985	0.45985	0.45985	2.26×10^{-31}
4	0.52949	0.52949	$0.46388^{\prime \prime}$	3.54×10^{-15}
5	0.59269	0.57374	0.52949	5.53×10^{-31}
6	0.60725	0.59464*	0.55362*	3.18×10^{-14}
7	0.63336	0.60640	0.57374	8.16×10^{-28}
8	0.68462	0.61965	0.60640	5.39×10^{-27}
9	0.74091	$0.68302 "$	0.61965	$3.84 \times 10-26$
10	0.77816	0.68385	0.68385	8.11×10^{-29}

Figure Z.--Amplitude distribution for the first normal mode of Lake St. Clair, with a period of 4.06 h .

Figure 3.--Amplituae distribution for the second nomal mode of Lake st. Clair, with a period of 3.12 h .

Figure 4.--Amplitude distribution for the third normal mode of Lake St. Clair, with a period of $2.17 \mathbf{h}$.

Figure 5.--Amplitude distribution for the fourth normal mode of Lake St. clair, with a period of 1.89 h .

Figure 6.--Amplitude distribution for the fifth normal mode of
St. Clair, with a period of 1.74 h .

Lanczos, C. (1950): An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl. Bur. Stand. 45:255-282.

Paige, C. C. (1972): Computational variants of the Lanczos method for the eigenproblem. J. Inst. Math. Appl. 10:373-381.

Platzman, G. W. (1975): Normal modes of the Atlantic and Indian Oceans. J. Phys. Oceanog. 5:201-221.
S mith, b. T. et al. (1974): Matrix eigenstystem routines--EISPACK guides, Lecture notes in computer science, Vol 6, G. Goos and J. Hartmanis eds., Berlin, Springer, 387 pp.

[^0]: $1_{\text {GLERL }}$ Contribution No. 237.

